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THE EXIT PROBLEM FOR SMALL RANDOM 
PERTURBATIONS OF DYNAMICAL SYSTEMS 

WITH A HYPERBOLIC FIXED POINT 

BY 

YURI KIFER 

ABSTRACT 

We consider the Markov diffusion process s r (t) transforming when e = 0 into 
the solution of an ordinary differential equation with a turning point ~7 of the 
hyperbolic type. The asymptotic behavior as e---~0 of the exit time, of its 
expectation and of the probability distribution of exit points for the process 
~:" (t) is studied. These indicate also the asymptotic behavior of solutions of the 
corresponding singularly perturbed elliptic boundary value problems. 

1. I n t r o d u c t i o n  

In the connected bounded domain G C R" with the smooth boundary OG, let 
there be given a nondegenerate elliptic differential operator 

1 2 (1.1) L =~  ~ a"(x) O" + ~  b'(x) 0 
i.i ~ .  OXiOX i ~ ~ .  ~Xi  

and the first order operator 

(1.2) (B(x), V) = ~] B ' (x)  ~ ; 

both operators have C~-coetticients extended smoothly into the entire space R" 
so that 

(i) they remain bounded functions with bounded first derivatives in R" and 
(ii) (a'J(x)) is uniformly positive definite in R". 
The operator L" = e2L + (B, V) generates a Markov diffusion process sc:(t) 

being a solution of the stochastic integral equation 

Io (1.3) ~:(t) = x + (B(~:(s)) + e2b(~:(s)))ds + e cr(~:(s))dw(s), 
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where b ( x ) =  (bl(x), . .  ., b"(x)), o'(x) is a matrix so that ~r(x)o,*(x)= (aiJ(x)) 

and w (t) is the n-dimensional Wiener process starting at zero (see, for instance, 

[21). 
The process r is considered as a small random perturbation of the 

dynamical system S' defined by the ordinary differential equation 

(1.4) d(S 'x )  = B(S 'x ) ,  S~ = x. 
dt 

Let ~'~ be the exit time to the boundary 0G of G for the process ~:~(t), i.e., 

(1.5) r: = inf{t : r ~ G}. 

Then the expectation u" (x) = Er;  satisfies the Poisson type equation (see [2]) 

(1.6) L~u ~= - 1 ,  u" I,o=0. 

The probability distribution function v'(x ,  t ) =  P{~'~,=< t} satisfies the parabolic 
equation (see [2]) 

(1.7) L~v" v" I,_0 = 0, v" 1, 

where, as usual, P{. } denotes the probability of the event in brackets. 

Let P~(dy) = P{~,(~-;) E d3,} be the probability distribution of the exit points 
of ~;(t). Then for any continuous function ~0(~/) on OG the integral 

(1.8) w:(x)  = f~o q~(T)P:td3') 

is the solution of the Dirichlet problem (see [2]) 

(1.9) L ' w ~  = O, w~la~= q~. 

The purpose of this paper is to study the asymptotic behavior of P{~'; _-< t}, Er~ 

and P;(d3~) as e ---~0 and therefore, as well, the asymptotics of solutions of the 
corresponding problems (1.6), (1.7) and (1.9). 

Suppose that G contains the origin 6,B((7) = 0 and (7 is the unique limit point 

for solutions of (1.4). Naturally, the asymptotic behavior of u',  v" and w" as 

e ~ 0 depends on the behavior of solutions of (1.4) and, in particular, on the type 

of the stationary point 6. 

In the case when (7 is of the center type the problem was considered in [5]. In 

the case of (7 being an attracting point this problem was studied in a number of 
papers (see, for instance, [2], [4], [8] and [10]). 

This paper is concerned with the case when (7 is of the saddle type or of the 
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repulsive type stationary point. If x E G such that S'x leaves G after some time 

then there is a finite 

(1.10) t(x) = inf{t > 0  : S'x E OG}. 

We shall prove that, in this case, when e --* 0 then 1"~ tends in probability to t(x), 

u ~ (x) tends to t (x) and P~ tends in the weak sense to 8 (S"X~x), where 6 (z)  is the 

probabili ty measure concentrated in z. 

If x E G  and S'x--~6 as t--~oo then we shall show that there is 

lim,-.olln r I-~u" (x) independent  of x. Concerning P~(dy)  we shall see that this 

distribution will concentrate as e --~ 0 on some submanifold of the boundary c~G. 

2. Assumptions and main results 

Suppose that the limit set of the dynamical system S '  in G U 0G contains just 

the one point r which is the origin of R ". Assume also that for some bounded 

smooth vector-function 6(x) ,  

(2.1) B(x)  = Ax + tp(x)t x t 2 

where A is a matrix having eigenvalues with nonzero real parts and at least one 

eigenvalue of A has a positive real part.  

By the well known facts about  stationary points (see, for instance, chapter 9 of 

[3]) it follows from the assumptions above that there is the decomposit ion 

(2.2) G U 0G = ~ U A ,  O A2 U A3, 

where A~ is a set of points x C G O 0G such that if x E A~ then S"x E G for 

u > s and S"x~. G O aG if u < s for some s = s(x) <=0 and S'x --* 6 as t --,oo; 

As is a set of points x ~ G U aG such that if x C As then S"x E G for u < s and 

S"x ~ G U aG if u > s for some s = s (x) > 0 and S 'x --* r as t --* - oo; A 3 is a set 

of points x E G IJ 0G such that if x E A3 then S"x ~ G provided s, < u < s2 and 

S"x~. G U OG if either u > s2 or u < s~ for some sj = s~(x) <= 0 and s2 = s2(x) >= 

0. 

REMARK 2.1. We assume that the vector field B(x)  is extended outside of G 

so that if S',x E G U OG and S'~x E G U OG for tl < t2 then S"x E G U OG for 

all u C [6, t2]. 

REMARK 2.2. The set A~ can be empty.  In this case A3 is also empty.  

Let h~ , . . . ,  A. be  the eigenvalues of the matrix A and 

(2.3) Reh~ . . . . .  R e A v > R e A ~ + ~ _ - . . - = > R e A , , > 0 > R e A , + ~ = > . . . = > R e A , ,  

where Re  a is the real part  of a. 
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Denote  by F,,,, the eigenspace of A which corresponds to the eigenvalues 
A , . . . , A , .  It is known (see [3] chapter 9) that there is a u-dimensional 
submanifold Wa,, tangent to  Fma, at r and invariant with respect to S'. From the 
assumptions it follows that the intersection Qm~, = Wm,, f3 oG is not empty. If 
u > 1 then Q,,~, is a submanifold of (v - 1)-dimensions on the boundary OG. If 
u = 1 then Qm~, consists of two points. 

We shall prove the following results. 

THEOREM 2.1. 

(2.4) 

I f  x E (~ U A , ) \  aG then for any 6 > O, 

rT, Re Al } 
!i_.omP 1 - 6 <  ]~ne i < 1 + 6  =1 ,  

i.e., ~'~/lln e I tends in probability to (Re A1) -1 as e --->0. I f  x E A2 t.J A3 then for 

any 6 > O, 

(2.5) l i m P  1 - 6 <  < 1 + 6  =1 ,  
~--,.O 

i.e., .r~ tends in probability to t (x)  defined by (1.10) and z~ is given by (1.5). 

THEOREM 2.2. I f  x E ( ~ U  A1)\OG then 

(2.6) 

I f  x E A 2 U  A3 then 

lim [In e [-1Er~ = (Re A1)-'. 

(2.7) lira E'r~ = t(x). 
~--.,O 

THEOREM 2.3. (i) I f  x ~ (r U A O \  OG then for any open subset U of OG such 

that U D Qmax one has 

(2.8) lira P•(U)= 1. 
e--.O 

(ii) When v = 1, Qm,x consists o[ two points zl and z2 and as e ---~0 then P~(dy) 
tends in the weak sense to �89 6(z2)), where 6(z)  is the probability measure 

concentrated at z. 

(iii) I f  x E Az  U A3 then P~ tends in the weak sense to the probability measure 

6(S'(X)x ) concentrated at the point S'(')x. 

REMARK 2.3. Theorems 2.1-2.3 by means of (1.6)-(1.9) give the asymptotic 
behaviour of the corresponding singularly per turbed elliptic boundary value 
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problems. In the same way as in (4.38) below one can easily obtain also the 

asymptotic behaviour of the problem L eu" = - / ,  u ~ Ioo = 0 using the probabilis- 

tic representation of its solution (see [2]), 

fi u ~ (x)  = E f(~:(s))ds.  

This gives for continuous and bounded function f that 

limllnel-'u'(x)=(ReAO-'f(fY) i f x E ( 6 O A ~ ) \ a G  
e---pO 

(2.9) 

and 

(2.10) 

REMARK 2.4. 

f t(x) 
lim,__,o u'(x)=Jo [(S'x)dt if x ~A2UA3.  

The similar results are true if the hyperbolic limit point is 

replaced by a hyperbolic limit circle. 

3. Auxiliary Gaussian processes 

e,xlt\ For any x ~ (At U ~?)\aG define the Gaussian diffusion process ~/~zl, ) as a 

solution of the following stochastic integral equation: 

f f (3 .1 )  n2:(t)=z + (B(S~x)+R(SUx)(n2~(u)-(S"x))au +e  ~(S"x)dw(u), 

where 

(3.2) 

Set 

(3.3) 

In what follows we use the norms 

(3.4) Izl 2= z Z + . "  +zZ 

R ( y ) = ( r , j ( y ) ) =  ~ cgy~ I " 

?.e, x l t  ) e.x e e = ~0: , ( t ) .  , ~ z , ,  n~,+s , , ( t ) -  S'x, :~(t) = 

2 and IIMII2= m,,, 
l ~ i , ~ n  

for each vector z = ( z l , ' '  ", z , )  and the matrix M = (~ j ,  1 _---i,] <= n). 

We shall need the following estimate: 

LEMMA 3.1. For any 8 >0 there is Cts~ such that 
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(3.5) E lff2Xt)l <= Cg~ z I + e )e '~e",§ 

[or each x E (AI U ~)\  OG, z E G and O <- s < t. 

PROOF. The process ~'2,~(t) satisfies the equation 

I f . . . . . . .  a(S"x)dw(u).  (3.6) ~ z ( t ) =  z + R (S  x ) ~ ( u ) d u  + e 

One can see that also 

6~[~(t) = eAI'- ')Z + eA"-")(R(S"x)-A)(,2'~(u)du 
(3.7) 

" t  

+ e J, eA"-")a(S"x)dw(u), 

where A is defined by (2.1). Indeed, taking the differentials in (3.6) and (3.7) we 

shall see that the solutions of equations (3.6) and (3.7) satisfy the same stochastic 

differential equation with the same initial condition and so coincide. 
It is easy to see from (2.3) that e ~,s is the eigenvalue of e As with the greatest 

absolute value. Thus by the spectral radius theorem (see, for instance, [11]) it 

follows that 

(3 .8)  !ira II e A, I1'" = e "~ 

Therefore for any 8 there is C~ ~) such that 

(3.9) II e A, II---- C~"e"Re"'*8) for all s e 0. 

Since x E (A1 O ~7)\ OG then 

(3.10) [S"x -~]<-C<2)e -"~ for all u ->_0, 

where C ~2), a0 > 0 are independent of x and u. 

By the smoothness of the coefficients of the operator L" one obtains from 

(3.10) that 

(3.11) UR(S"x)-All+lla(S"x)-a(e)ll--< C'3'e-"~ 

for some C ~ > 0. 

Let M(u)  be a random matrix-function such that for each u E[s,t]  the 

random matrix M(u)  is measurable with respect to the a-algebra F, generated 

by the random values { w ( v ) , 0 =  v =< u}; then it is well known (see [2] chapter 

4.7) that 
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(3.12) El f f  M(u)dw(u)12= f '  EIIM(u)H2 du, 

provided the right hand side is less than infinity. 

Therefore, by the Cauchy-Schwartz inequality 

(3.13) E[ f f  M(u)dw(u)  l <= ( f f  E],M(u)],~du) ~'2 . 

Employing (3.13) with M(u) = eA"-~tr(S~x) together with (3.9) and (3.11) we 

obtain from (3.7) that 

E ~xt 

_ I :z(u)l <_et,-~XRr f'e-%.e-,.-~,tRe,,+S~E .x du +eCt") ,  
(3.14) 

for some C ~4) > 0. 

Therefore by Gronwall's inequality (see [3]) for the function 

e.x t (3,15) a , ( t  ) = e-'~'~ +~x'-'~ E l r )1 

one gets (3.5) with C~ ~ (Cts~)+ O'))exp(C~)Ct3~/ao). 
The next estimate we shall need is the following result: 

LEMMA 3.2. For any 8 > 0 there is C(a 5) so that 

(3.16) E l ~"~( t ) -  ~,'~(t)l <-- C~'(I z l + e )e-%" e'~~ 

[or each x E (A~ tO ~7) \ dG, z ~ G and 0 <-<_ s < t. 

PROOF. From (3.5), (3.7), (3.9), (3.11), and (3.13) we easily find 

I; 
(3.17) + C~)C~6~ee ~a~,+8~,-.~ e -%" 

=< Cg~)(I z I+ e)e-%~e '~~ 

with some C ~6) > 0 and C~ ) = t',r -1 • C~,)C(6) ~s .-.~ ,-. ,~o - that proves (3.16). 

Now we need the following estimates for the process ~'~(t) defined by (3.3): 

LEMMA 3.3. (i) There is Ko > 0 such that 

(3.18) P{I ~'7(t)[ < r} _--< g,,e -~ . . . .  R~, = r e , 

for any z ~ G and e, r, t > O. 
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(ii) There is K, > 0 and 8o > 0 such that 

(3.19) E dist (~':(t), F,,,~) ~ K,(e + dist (z, Fm~,)) e ~R~*'-a~ 

for every z E G and e, t > O, where, recall, Fro,. is the eigenspace of A correspond- 

ing to the eigenvalues A~,. . . ,  A.. 

PROOF. Let FI be the eigenspace of the matrix A corresponding to the 

eigenvalues having real parts less than ReAl. One can choose vectors 
~(~+~),.... ~tn) in the linear space F~ so that 

(3.20) (r r = (A -~t,), ~:o)) = ~,j, 

where A = (aq((~)) and 8q = 0 if i ~  j and 8, = 1. 

Consider now a basis r ~:(,) of the whole R" such that r ", ~:(,) are 
the same as above and (3.20) holds for all 0 _-< i, j - n. For any vector g ~ R" 

there is a unique representation ~: = ~ + ~ with ~ E F~ and ~ E Fo, where Fo is 
spanned by ~:(,, . . . ,  eta). 

Since F~ is an eigenspace of A then A~ ") E F~ for all i = v + 1 , . . . ,  n. Hence, 

equation (3.6) can be written for ~':(t) in the new basis in the form 

fo' (3.21) ~:(t) = i + Ao~:(u)du + ef t( t ) ,  

~E t ^e ^e (3.22) L(  ) = ~f + (Aff,(u)+ A,~,(u))du + e~, 

where Ao is a (vXv)-matr ix ,  A2 is a ( ( n - v ) x v ) - m a t r i x ,  A~ is a 
( ( n -  v ) x ( n -  v))-matrix and ~,(t) and ~ ( t )  are the Wiener processes (with 

respect to the inner product (3.20)) in Fo and F~, respectively. 
It is clear that 

_- = [ (3.23) Pt l~( ' t  )l<rI~Pll~:(t)l<K~r}= q̂ " ( t , z ,y )dy ,  Jl y:IyI~K2r} 

where ~'(t ,  z, y) is the transition density of the process ~:(t) and K2 > 0  is a 

constant depending just on the matrix A. This transition density has the explicit 

form 

t~" (t, z, y ) =  (27re2) -~'2 (det fo' e(t-~)n,, et'-')n,; ds )-1/2 

(3.24) {1 ((I ) )} xexp  - ~  e -2 , e"-')A"e('-')Ai'ds (y --e'A"z),(y --e'A"Z) . 
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Obviously, the eigenvalues of Ao are AI , "  ", A~ and so by inequality (5.20) Of 

(6], 

(f0 ) (3.25) K~'e2'~r~ et'-'J%e"-')'qds =<K3e 2'~reA,, 

for some/ (3  > 0. Thus 

(3.26) #" (t, z, y) -< (2~r) -"2 e -~K~/2 e-'~ "~ ~, 

which, together with (3.23), gives (3.18). 

To prove item (ii) pick a basis ~"~, . . . ,  Or.) of R" satisfying (3.20) and such 

that ~bt~), ..  ., Ot~) C F . . . .  For any vector ~ E R" one has the unique representa- 
tion ~ = ~ + ~ with ~ E Fm~ and ~ E F2, where F2 is spanned by 0t~+l~, .. ., ~b '"~. 

It is clear that A~,t~ E Fm~ for all i = 1 , . . . ,  v. Thus equation (3.5) for ~'~(t) in 
this basis can be written as follows: 

(3.27) ~;(t) = ~ + (Am~,(u)+A3~:(u))du + cOy(t), 

~:(t) = z + fo' A,~, (u)du + e~,(t), (3.28) 

where Am.~ is a (vXv)-matr ix ,  A3 is a ( v x ( n - v ) ) - m a t r i x ,  A4 is a 

((n - v ) •  (n -~,))-matrix and if( t)  and ~,(t) are the Wiener processes in Fm~ 

and F2, respectively, which correspond to the inner product ( , ). 
Obviously, 

(3.29) K~ ~ I ~:(t)l--< dist (~':(t), Fro.,) _-/(41 ~:(t)l, 

for some /(4 > 0 depending just on the matrix A. 

It is clear that the eigenvalues of A, are A~+,, �9 �9 A. and so for any 8 > 0 there 
is C~ 7J such that 

(3.30) 11 e'^, II --< C~ 7'e''r~ ~.,+8,, 

for any t => 0. 

The solution of (3.28) has the form 

s (3.31) ~:(t) = e'A,z + e ea'~'-"~d~(u). 

Taking into account (2.3), (3.13) and (3.30) we easily obtain 

E [ ~'~(t) [ = r ,  tT), ~ + [ ~ [ ) etr~176 + (Re A ~)-~/2) (3.32) -" < ,--8o~ 

with 
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(3.33) 

Now from (3.29) and 
K4C~2(1 + r , ) ( 1  + (Re at)-'r2). 

Set 

SMALL RANDOM PERTURBATIONS 

~5o = min (R  eA~-ReA~+~ R2A~ ) 
2 ' " 

(3.32), (3.19) follows 

(3.34) t,(e)=(ReX, +3")-'llnel and r~(e )=  e "~R~247 

83 

with K~ = 

for 3' > - Re A ~. 

F,x t = uP{I ~ : a , (  )1---- r + c'='e -%'} 

<= EP{[ ~ : ~ ) ( t  - s)[ =< 2(r + C'~)e-%' )} 

e,x F,~ + EP{[ ~: , :~ , ( t ) -  ~ : , :~( t ) l  >-- r + C'~)e-% '} 

<= Koe-"2~(r + C~2) e-",,')"e - " - ' ~ ,  

+ 2C~5,)(C~~ + 1). r  (r + C'2~e-%') - ' '  exp[(Re A, + 8,)t - aosl. 

(3.39) 

By (3.3), (3.5), (3.10), (3.16), (3.18), (3.38), the Markov 
Chebyshev's  inequality one can see that 

e{[ r/~,::(t)[ =< r} _-__ P{I ~:b(t)l =< r + C'2)e -%' } 

Actually, we shall need just the following result: 

LEMMA 3.4. There are some positive constants C ~,  3'0 < 1, 3'~, 3'2 and 3"3 such 
that [or any 8 > 0  small enough and x ~ (A1U ~) \  OG there is Cg ~) so that 

(3.35) P{I rlS:~(t~o(e))l --> e-6r~o(e)} < C~'e'2", 

(3.36) P{I • t:(t~o(e ))l <= e "r~(e )} _-< CC,9)e ~ ,  

(3.37) P{dist(rl~;7,(t~o(e)), Fma,) --> e"r~o(e)} _-< C")e"3, 

where we can take,/or instance, 3'0 = ~,min(a0, 1) with ao defined in (3.10) and the 

other constants will be [ound below. 

PROOF. By (3.3) and (3.10) one has 

(3.38) ] ~'~:~(t)I--> I ~;: :( t) l-  [S'x I _-> I ,~Z::(t)l- c':)e -~ 

Setting here t = t~o(e) we shall obtain (3.35) from (3.38), Chebyshev's  inequal- 
ity and (3.5) used with 8 replaced by �89 + 3"0). 

For x = 8 relation (3.36) is given by (3.18). We shall prove here (3.36) for 
x ~ AI \OG satisfying (3.10) with a o >  Re A,. One can verify (3.36) for other 
x U A~ in the same way as in w of [7] by considering the explicit form of the 

r"~lt~ (see Appendix).  transition density of the Gaussian process s0.o~ ) 
property and 
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Given 8 take here t~o=t~(e), r=eSr~o(e) and, for instance, s =  

'8 l ine I(ao ~ +(Re~,)-~), & = ~ 8 ( a o - R e h , ) ( R e h l  + yo)(ReA~) -~, then (3.36) 
follows from (3.39), provided ao > Re h,. 

Since Fma, is a hyperplane we obtain by (3.3), (3.5), (3.10), (3.16), (3.19), (3.38), 
the Markov property and Chebyshev's inequality that 

P{dist 0?~::(t), Fro,,) > r} 

�9 e , x  _--< P{d,st (~'o.v(t), rmax) > r - Ct2) e -~' } 

=< EP{dist (~'~;,:~,)(t - s), Fro,) > �89 - C~%-%')} 

(3.40) +  P{I I > �89 - 

=< 2K1(Cg~ + 1)e(r - Ct2)e-%')-lexp[82s + t ReA, - 8o(t - s)] 

+ .~ c, ts)i~to). 1)e (r - Ct2~e -%')-~exp[t(Re A, + ~2)-  aoS]. 

Put here t = t~o(e), y~ =~min(8o, ao)(ReA~+ yo) -~, r = e~,r~o(e), s = t/2 and 

~5: = Amin (60, ao), then (3.37) follows from (3.40). 

4. Proof of Theorems 2.1-2.3 

We start this section with the following result proved in [6] (Lemma 4.1 and 

Corollary 4.1). 

LEMMA 4.1. There exist do, ro > O which depend just on G and the flow S' such 

that, for any sequence of points zo, " ", z ,  E G satisfying the property: 

S'z~ E G  and z~+,~ U,(S'z~) 

(4.1) for all i = 0 , . .  ", m - 1 with some r _~ ro, 

there is a point y E G such that 

(4.2) z, E U~o, (S'y), i = 0 , . . . ,  m, 

where U , ( z ) = { v  : lz  - v l - - < r } .  

Another  result about the dynamical system S' that we shall need here is the 
following: 

LEMMA 4.2. There is an open domain G D G U OG such that for any 6 > 0 

there is Cg '~ > 0 with the property: if  for some points x and y, 

(4.3) S"x E G and S"y ~ 1~ [or all u ~ [0, t] 

then 
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(4.4) sup I S~x - S ~ y l -  < C~~ - y l. 
O~--u~t 

PROOF. Choose some domain t~ D G O OG such that the decomposition 
(2.2) holds for t~, as well. It is possible since B ( z )  was extended smoothly into 
the whole of R". 

One can write 

(4.5) S~z = e"Az + e ~ - ~  

Indeed, differentiating both sides in (4.5) we shall get that the solution of (4.5) 
satisfies (1.4). 

Substituting x and y into (4.5) we deduce from (3.9) that 

I S " x  - S " y l < =  C'~"e '~~  - Y l 
(4.6) 

el, e'a~*'+'~'~-~ (S ~ ) - AS ~x - B (S Oy) + AS ~y [ dr. + 
JO 

By lemma 4.3 of [6] it follows from (4.3) that 

(4.7) I S~ I + I SVy I =< Ksmax (e -~,~ e -~,''-~ 

for some Ks, aa > 0  independent of x, y E G. Using (2.1), (4.6), (4.7) and the 
smoothness of ~ in (2.1) we easily obtain that for some/ (5  >0 ,  

sup I S~x - S~yl_- < C~" e '~e* '+ ' ) ' l x  - Y[ 

(4.8) 

fo' + C~')Kse ~R~ max(e-"'~,e-","-~)e-~R~ sup IS~ - S~ ldu. 

Applying Gronwall's inequality (see [3]) to the function 

a2(t) = e-'R~ sup I SUx - SUy [ 
O ~ u ~ t  

considered in (4.8), we deduce (4.4). 

We shall need also the following important result: 

LEMMA 4.3. There are positive constants K6, 42 and 43 such that for any [3 > 0 

one can find eo(fl) > 0  and K7(/3)>0 so that the following is true: 

inf sup 
Z E Uel-a(x ) O~t ~min(T,~-~) 

(4.9) 
_-_ K6(min (T, e-~))2exp( - a2/e 2~) + K7(/3) exp( - a3/e 8), 
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for any x E G and positive 8 < 1 and T, provided 0 < e -< eo(/3), where, recall, ~". 
is the exit time to the boundary OG for the process ~:(t). 

PROOF. (Cf. section 5 of [6].) In the author 's paper  [6] it was actually proved 
that there is a positive constant a4 > 0 such that for any ~ > 0 one can find 
el(fl)>O and Ks( /3 )>0  so that 

(4.10) P{~:>t}<-Kg( f l )exp(-ad)  for all t _-> e -~ providede<e~(fl). 

Therefore,  if e _-__ e,([3) then 

(4.11) 0 <- Q~(x, T) - Qi(x, min (T, e-~ __< Kg(/3) exp ( - a4e -o). 

Set N = integral part of min(T, e -~ and consider 

Q ~ ( x , N + I ) - P  I inf sup [~:(k)-Skzl>2dod~r(e)} ,  
[. Z E U~ - ~ x )  k l i n t e g e r  

0 ~ k  ~ ;min ( '~N+ 1) 

where do is defined in Lemma 4.1, 

(4.12) r (e)  = e'-* /4dod 2, d, = sup IIDS"(z)ll 
z E G U O G  
- l ~ u ~ i i  

(4.13) 

O;(x, min (T, e-~ _ Of(x, N + 1) 

= min(T, e -~  sup 
k - -  integer 

Ollk31N, z E G  

P { [ s~:(k) - z [ <= e 1-~/2d,, 

[~:(k + 1 ) -  S'z [ <-_ - e '-Sl2d, and o-.,~,sup [~:(k + t) - Stz l > e '-a} 

=< min (T, e-~ exp( - aden*), 

for some Kg, a5 > 0. 

Next we have 

(4.14) 

P { ' r : -  m} = / . . .  L p'(1,x, zl) . . .p '(1,z, ,- , ,zm)dzl . . .dz, ,  

= I'(x, m)+  R'(x, m), 

where p~ (t, x, y) is the transition density of the process ~::(t) with the absorption 
on the boundary 0(3, i.e., in fact, of the process ~ : ( t ) =  ~::(min(t, ~-:)), and 

and DSU(z) is the Jacobian matrix of S" at z. 
One can easily obtain from [1] (see formulas (5.7) and (5.8) of [7]) that 
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(4.15)I'(x,m)= fo "'" L,  p ' (1,x ,z , ) '"p '(1,  zm-l, zm)dZl'"dz,~. 
,(~)(S Ix) (~)(Slzm_l) 

From estimates of [1] it follows that 

(4.16) Re(x,m)<-_m sup p'(1,y,z)< Klomexp(-a6/e2g), 
Z ~ Ur(,)(slY) 

for some Klo, a6 > 0. 

Notice that the integration in the integral I '(x,m) in (4.15) is over all 

sequences to = (Zo, z 1 , . ' . ,  z~), zo = x, satisfying (4.1) with r = r(e). Therefore by 

Lemma 4.1 for any such sequence to there is a point y"  so that 

(4.17) sup [zk - Sky"[ < dot(e), 
k - -  integer 

O ~ k : ~ m  

where to = (Zo," �9 ", zm), z0 = x and zk E G for all k = 0 , "  ", m. 

Denote 

Q~(x;r; 1;m) = P{r m and 

Then by (4.14)--(4.17) we get 

inf sup I~:(k ) -  S% l > r} . 
z IE O t  l - a ( x  ) k --integer 

(4.18) O~(x ; dor(e); m, m) <- K,om exp( - ade2a). 

Recall that the coefficients of the stochastic equation (1.3) are extended into 

the entire space R"  as bounded and smooth functions and so we can consider 

~:(t) after the moment r as well, and S t can be applied to any z ~ R". 

As in (4.16) we obtain from [11] and the definition of dl in (4.12) that 

sup P{I ~:(k)-  z I <-- aor(e) and I~:(k + 1 ) -  S'z I > 2dod~r(e)} 
z E G U a G  

(4.19) 
= KH e x p ( -  aT/e2~), 

for some Km a7 > 0. 

Now (4.18) together with (4.19) gives 

(4.20) Q~(x, 2do&r(e), m, m + 1)<_- K12m e x p ( -  ade 28), 

for some K12, as  > 0. 

Obviously 
N + I  

e X e Q2( , N + 1) -< ~ O3(x, 2ao&r(e), m, m + 1) 
m = 0  

and so by (4.11), (4.13) and (4.20) we get (4.9) which proves Lemma 4.3. 
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From Lemmas 4.2 and 4.3 we obtain immediately the following statement: 

COROLLARY 4.1. For any positive & y < 1 there is ,..~.,:'~ > 0 such that 

(4.21) E sup I ~::(u) - S"x 12 = < C ~ e 2-, exp[2t(Re/X~ + 8)] 
0~iu "~min(t,~ ) 

/or every x E (6 U A~)\ OG and t > O, provided e is small enough. 

e ,x  i t x Now we are able to compare the processes ~:~(t) and rlo.xt :. 

:,o2~ > 0 such that LEMMA 4.4. For any positive 8, 3' < 1 there is ,-.e,, 

~.x < C ~12~ exp[2t(Re ,~ + (4.22) El~: ( t ) -no ,x ( t ) lX , .~  = e,, e 2-" 8)] 

provided x ~ (6  t3 A~) \ OG, t > 0 and e is small enough. 

PROOf. One can verify directly that the process ~ ( t )  satisfying (1.3) is also 
the solution of the following equation: 

~ : ( t ) -  S'x = eA"-")(B(~:(U))-- B ( S ~ x ) -  A ( ~ : ( u ) -  S"x))du 

(4.23) 

e 2Jo': e^"-"b(~:(u))du + e fJo' e"-')^cr(e:(u))dw(u)" + 

By the C2-smoothness of coefficients B ( z )  we can write 

(4.24) B(z)=B(S'x)+n(S'x)(z -S'x)+(,(z,x,u)lz -S'xL 

where 6 is a bounded function when x E t7 U A~ and z ~ G O 0G. 
Employing (3.3), (3.7), (3.9), (3.11) and (4.21), (4.23), (4.24) we obtain 

E lgZ( t ) -  ~l;::(t)lX,,< 

(4.25) <- C~176 Jo f '  e'a~'l+*)"-")e-%"El~Z(u) - no,x(u)lx.~:,*'~ du 

Io' + gl21.~ 8 f~(1) f"v(l I) 2--,w~.~8,~ e elReX:6)~ 

" fo' + Kz2C~)e 2 e~R~"'+"J~'-~du + J '(x ,  t), 

for s o m e / ~  > 0, where 

(4.26) J~(x , t )=-eEx, ,~  [fo' e"-~'A(cr(~:(u))-tr(S~x))dw(u)I " 



Vol. 40, 1981 SMALL RANDOM PERTURBATIONS 89 

Using (3.13) together with (3.9) and (4.21) we conclude that 

J~ (x,t)<= eK,3C~') (fo' "2'r~ I=X.~ [f-(~u ) - S"x [2du) 1/2 

(4.27) < :-~r: ,.~o~lr,1),xt/2 ~R~A,+,~, 
= E Jt~131~-,~ ~'4,.,,8,2V1,1 e 

for some K,3 > 0. Applying Gronwalrs inequality (see [3]) to the function 

a3(u ) = e-'"~'+')"E l ~;(u ) -  r/;::(u)t X,-~ 

taken in (4.25) we get from (4.27) the assertion (4.22). 

Now we can proceed to the proof of the theorems. 

PROOF OF THEOREM 2.1. Define 

(4.28) d2(x)= inf dist(S'x, dG). 

Here we assume x E (A~ LJ ~?)\ tgG and so d2(x) > 0. Then by (4.21), (4.28) and 

Chebyshev's inequality we obtain 

P{,~<=t~(e)}<-P( sup I~:(u)-S"xl>-_d2(x)} 
t O _  u ~min(tvo(e),-r~x) 

(4.30) < :,~,,) ,,.I-21 
�9 ,-,a,~,4 E ta2 ~ X j ,  

where t~(e) is given by (3.34) and 

(4.31) T, = (To - 8)(Re Al + To)-~. 

Recall that the hyperplane Fmax is tangent at ff to the manifold Wm,~ defined in 

w Therefore one can find K14 :> 0 SO that 

(4.32) dist (z, Win,,) _-< K~,r 2 for any z (E F , , ,  and r > 0, provided I z I =< r. 

Now using (4.22), (4.30)--(4.32) and Chebyshev's inequality we easily obtain 

from (3.35)-(3.37) that there are ' /5 , ' /6>0 such that for any 8 > 0  and 

x E ( A ,  U ~)\OG one can choose C ~ ( x )  > 0  so that 

(4.33) e{~:(t~o(e )) ~ W ~ (8, "/o, 2"/5)} =< 1 - C~13'(x )e "~, 

where W ~ (8, To, '/s) = {z : e "r~o(e) <= [z I < -~ = e  r~o(e), dist(z, W,a,)<=e'~r~o(e)}. 
From chapter 9 of [3] it follows that for any z E W,~  

lim t -~ In [ S-'z [ = - Re A, 
t ~  
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(4.35) 

provided e 
Put also 

and so for any 8 > 0 there is C~s ~4) > 0 such that 

(4.34) (Cg14))-~ [ z [ e ~ReA,-6), < [ S'Z [ < C~s~4' [ z [ e ~Ro~,+6),, 

provided z ~ Wm,~ and S"z E G for all u E [0, t], where r D G U 0G is the 
domain chosen in Lemma 4.2. 

Set 

t ( z )  = inf{t _-> 0 : S ' z ~  r 

then it is easy to see from Lemma 4.2 and (4.34) that 

sup [(z) =< t - , S R ~ , ( e )  -- t o ( e ) ,  
z E W "  (2&VO,'f5) 

is small enough. 

~(z)  = inf{t  > 0 :l S'z I --> �89 (~7, aG)}; 

then by Lemma 4.2 and (4.34) one can see that 

(4.36) inf t(z) > t4~Rc,,(e) - to(e). 
z E W" (2& V0,75) 

Finally, (4.9), (4.33), (4.35) and (4.36) give for x E (A, U ~7)\0G that 

(4.37) P{t48 RcA,(E) < 'r~ _--< t-4~ ReA,(e)} ----> 1 -- 2C~3)(x)e ~6s, 

provided e is small enough. This together with the definition t-, (e) in (3.34) yield 
(2.4) taking e ~ 0. The assertion (2.5) follows immediately from (4.9) and (4.10). 

PROOF OF THEOREM 2.2. From (3.34), (4.10) and (4.37) we easily get 

[[lne l-lET'.-(ReAl)-1[ = [ l ine  I-' fo | P{':>>-t}dt- (Re A,)-' I 

--< I lne I-' r,,,,.q., . 

+ l ine [-1 ['-~'*~" p{1.:> t}dt 
J [4eR�9 [,) 

s-~'t6s ' f 
(4.38) + [ l n e  1-1 | P { r : _  -> t}dt 

Jt  -4~ReX|e) 

+ line [-' P{~r'. _-_ t}dt 
-~,0. 
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_-<48(1 + 48)- ' (Re A1) -1 +2C~l~)(x)e~"~(ReA~)-~(1 + 4 8 )  -~ 

+ 88 (Re A 1)-1(1 - 1682)-, + 2 Cta,3)(x )e �89 I ln e 1-' 

+ Ks(�89 2~lln e 1-~ exp ( - a4e -~,,,8), 

provided e _-e,(~3,68). 

Letting e --~ 0 in (4.38) and taking into account that 8 > 0 is arbitrarily small 

we shall get (2.6). The assertion (2.7) follows immediately from (4.9) and (4.10). 

PROOF OF THEOREM 2.3. By (4.35) and Lemma 4.2 we obtain that there are 

K,5, 3'7 > 0 such that 

(4.39) sup sup dist (S'z, Win,x) ------- Kl5e ~7. 
z E W ~ 12~.'r0,vs) 0~t"::i(z ) 

Therefore by (4.9), (4.33) and (4.39) we prove item (i) of Theorem 2.3. Item (iii) 

follows easily from (4.9) and (4.10). 

To prove item (ii) define 

r~(8, y0, 3,0 = {z : e ~r,o(e)_-__ Izl_-__ e- ' r~(e) ,  dist (z, Fmax) = < e"rvo(e)}, 

where y0 and 3,1 are found in Lemma 3.4. 

When v = 1, 8 and e are small enough then F*(8, 3'0, 3,0 consists of two 

disjoint connected components F~(8, 3,0, 3,1) and F-(& 3,o, 3,1) which are symmetri- 

cal with respect to (7. Notice that the process ~;;~(t) defined by (3.6) is also 
y e,x i t "~ symmetrical with respect to (7, i.e., the probability distributions of ~o.~ ) and 

-so.o~ ) coincide. Thus 

(4.40) P{~t~(~(e)) ~ r~-(28, 3,0,�89 = e{~;:~(t,o(e)) E r~(28, 3,o,~3,1)}. 

If 8 and e are small enough then also 

r'_(28, 3,o,-~3'1) n r ;(28,  3"0, ~3',) = 0 

and so by (4.40) 

(4.41) P{~;;~(tvo(e)) ~ r ; (28,  3'o, �89 ~ ~. 

Since for x E (A, U (7)\OG it follows from (3.3) and (3.10) that 

In ;:~,( t~.(e)) - ~;:Nt,,(e ))1 --< C~2) e-"~ 

then by the choice of 3'0 in Lemma 3.4 we get for small e that 

(4.42) e{~;:~(t~o(e)) e r ;(28,  3'o,�89 ---- P i n  ;::(t,~(e)) e r ; (8,  3'0, 3',)}. 
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On the other hand, by (3.35)-(3.37), 

(4.43) P{rl~:~(t,o(e)) ~ F~(8, 3'0, y,) U F~-(8, 3'0, yt)} => 1 - C~9)e "~', 

provided 8 and e are small enough. Now by (4.41)-(4.43), 

(4.44) �89 > P{n;:~(t~o(e)) E F~(~$, yo, 3",)} > �89 - C~9'e "~". 

Next, employing (4.22), (4.30)-(4.32) and Chebyshev's inequality we deduce 

from (4.44) that 

+ Cts'5)(x)e ~." >= P{~:(t,o(e )) E W5_(6, To, 2 yT)} 

(4.45) >= �89 _ C~,S)(x )e ~8 

(cf. (4.33)) for some 3"7, W > 0  and C~'5)(x)>0, where W~(6, yo,23'7) and 
W~-(6, y0, 23,7) are two disjoint connected components of W'(8,  3'0,23,7). 

Finally, using (4.9), (4.35) and (4.39) together With (4.45) we obtain assertion 

(ii) of Theorem 2.3 by letting e--> 0, that completes the proof. 

Appendix: Proof of (3.36) lor all x E (A~ U 6 ) \  dG 

Let DS', be the differential of the dynamical system S' at z E R" and define 

the metric form 

(A1) ~ aq(z)dz~dz ~, z E R " ,  
i j ~ n  

where (a,/(z)) = (a 'j (z))- '  and the matrix (a 0 (z)) is given in (1.1). Denote by T, 

the tangent space at z E R" and for any ~, r / E  Tz let (~, rl)z be the inner product 
of ~ and r/ in Tz generated by the metric form (A1). 

The differential DS'z acts from Tz to Ts,z and the adjoint operator (DS'~)* acts 
from Ts,~ to T~ and satisfies the property 

(A2) ((DS'~)*rl, f)z = (n, DS'~)s,~ 

for any z E R ", Ej E T~ and "0 E Ts,,. 
Define 

( fo �9 �9 r;(t, ~:, n)  = (21re2) -"/~ dets,~ DSs, ,~(DS~, ,~) dr 

I - I  t 

( a 3 ) e x p { - ~ - - ~ e 2 ( ( f ,  DS:,.,(DS:,.O*d~. ) ( ~ - D S ~ , ) , ( ~ - D S ' , , ) ) s , ,  } , 

where ~ E T,, ~ U Ts,, and the operator f~ DSs, ..(DS~, .,)*dr transforms the 
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tangent space Ts,~ onto itself and so the determinant dets,~ with respect to the 

inner product ( , )s,~ is defined in a correct way. 

Let p~(s, z, t, y) be the transition density, with respect to the Euclidean volume 

in R ~, of the process g ~ ( t )  defined by (3.3). One can easily see (of. the formulas 

(6.6) in [6] and (4.3) in [7]) that 

(A4) p~(0, 0, t, y) = r~(t, O, y)(det  ao (S'x)) ~'2, 

where y is considered as a vector of R ~, as well as a vector of Ts,~. 
Let now x E(A1 t.J r One has 

p ~x [ { I ~ro:,,(t) I _--< p,} = p~(O,O,t,y)dy 
d~ y : ly [ ' c :p l}  

(A5) / .  
< | r~(t,O, rl)ds,,~, 

JI n :llnlts~ ~t,z} 

where p2 = K~60~, K~6>0 is a constant independent of p~, x, t;  ds,,~l is the 

element of the Euclidean volume generated by the inner product ( , )s,, in 

Ts,, and I1,  IIs,  is the norm of T/ with respect to the same inner product. 

Let F" and F" be the eigenspaces of the matrix A from (2.1) corresponding to 

the eigenvalues of A with positive and negative real parts, respectively. Recall 

that Fma~ denotes the eigenspace of A corresponding to Az,..-,  A~ in (2.3). 

Choose to > 0 big enough so that S~x is close enough to 6 and set, for t = 0, 

" ~ t - t o  u 

(A6) Fs,x = DS s'o, F 

It is easy to see that if to is big 

(A7) f's,x--~ F ~ and 

and also 

(A8) 

t - t  o 

and Fs,, = DS , ['max S Ox �9 

enough then 

Fs~-'-~ F~., as t ---~ oo, 

IIDa-s:-x  I1 -= K~7 e-w 

for any 7 /E f'~,§ and all t, 7 _-__ 0 with 3,9, K17 > 0 independent of t, r and 71. 

DSs,,xF converge to a Next, for some subsequence t,---~oo the subspaces -" " 

subspace f'. Set 

(A9) f's,~ = OS'xf" for t >- 0. 

One can verify that f's,x---~F' as t---~o0 and 

(A10) II DS's.   IIs,-  - K,8e-',o' II ~ IIs-  

for any g ~ f's,~ and all t, r -> 0, where yl0, Kls > 0 are independent of t, r and ~. 



94 Y. KIFER Israel J. Math. 

In fact, under assumptions of w it follows from [9] that the tangent bundle T6 

restricted to the domain G has an invariant under DS' continuous splitting 

Tc = [" @[", where r'~ and f" are expanding and contracting subbundles, 
respectively. However we shall need here this splitting just for one trajectory 

{S'x, t > 0} and so the spaces I's,,, ['s,, and ~sJ~, constructed above, will be 
enough for our purposes. 

Define the family of operators 

DS's.x : Ts., "* Ts,§ t, *" >- O 

acting as follows: 

(Al l )  

and 

if ~: ~ f's-. 

(A12) D'S's ,xr/-  Ilnlls', DS's*x,7 if r/E~s,,.  
- II DS'~,~,~ IIs,*,x 

In the same way as in lemma 4.2 from [7] we obtain that 

( (fo " " (A13) K~-~ =< dets ,~ DSs,-.,(DSs,-.~) dr [Jac _-__ Kt9 

for some K19> 0 independent of t, where Jac DS', is the Jacobian of the linear 
map DS'~ : T, ~ Ts,, with respect to inner products ( , ), and ( , )s,,. 

Next, for any ~: E T~ 

(A14, ((fo'DSs,-.,(DSs,-., , 'd,r)-'D'~S:~,DS:,)s,>=K2o(!~,,), ,  

for some K2o > 0 independent of ~: and t. Indeed, it suffices to prove that the 
selfadjoint operator 

Wl, ,  ( s:.fo �9 �9 - .  DSs,-.,(DSs,-.,) dr(DS~,,) ) -  

acting from Tx to Tx has eigenvalues which are greater than or equal to K~ or, 

equivalently, that the eigenvalues of the operator W;'( t )  are less than or equal 

to K~.  But the last statement can be proved in the same way as inequality (4.34) 

of [71. 
For every ~: E Tx there is the unique decomposition ~ = ~:m,x + ~ ,  where 

~m,~ E I7 "~ and ~ is orthogonal to I-~ ~ with respect to the inner product ( , ),. 

Set U(t, p2) = {r/E Ts,~ :11,1 IIs,~ ---- p~}. Employing (A3), (A6), (A13), (A14) and 
Fubini's theorem one gets 
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fu r ~,(t, 0, ~)ds,~Vl 
(~pz) 

=< K'9(2"IrE 2 -"/2 "s,.u(t,oz)-' e x p (  -- 2 ~  (~, ~))  d.~ 

<=K2'e-'f~rT= n z,s,,.u(~)--' exp ( - 2 ~  (~==" ' " = ) )  d"='= 

=< K2,e-" voLm~(L'~ N DSs:~U(t, m)) 

=< K=e-~P ;I Jac (D"S s~)r~l 

(A15) 

-~ ~ r D-S t -1 p fJa ( , 

for some K21,/(22 > 0 independent of t and e, where voL m~ is the volume on the 

subspace ~ with respect to the inner product ( , )~, v = dim F ~  = dim 

and we denote by (H)y  the restriction of the linear map H : 7", --* T= on the 

linear subspace Y of Ty and by Jac (H)v  the Jacobian of the linear map 

(H)y  : Y---*Z = H Y  with respect to inner products ( , )y and ( , )=. 

Since I Jac(e'^)r= I = I det (e'A)r.. I then by the definition of F ~  it follows that 

--1 tA  (A16) lira t lnlJac(e ) r_ [  = v ReAl.  
t ~  

Taking into account that DS'o= ,A ~ ,  e , ~,a= depends smoothly on z, 

DS'~ = DS'x on ~F7 =, S'x --* 

as t--* o0 and using (A6), (A7) and (A16) we obtain that 

(A17) lim t -~ ln lJac (D'S ;) .r~[ = v Re A~. 

One can see from here that for e a c h .  > 0 there is C~ ~ > 0 independent of t _-> 0 

such that 

(A18) 1~^lr~,,,~ > r,(l~) ~(R~ -,) J ( : I U L J [ - / O X ) ~  x --~-- U K  e i . 

Using (A15) with 02 = K]6p; = K16(eSr~o(e)+ C(2)e -%') we get by (3.3), (3.10), 

(AS), (A15) and (A18) that 

e,x ~,x t e{1,7 o..(t )[ _-< --< e{I  )l <= e Sr~o (e ) + C(2) e-%'} 
(A19) 

=< K~6K22(C~6)) - tE  -~ e -(R~*'-~)"(E argo (e)  -t- C(2) e-%')~. 

Taking t = t~o(e), To = ~min(ao, 1), r = ~$(ReA~ + 3'0) and 8 small enough we 

shall get (3.36) from (3.34) and (A19). 
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