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THE EXIT PROBLEM FOR SMALL RANDOM
PERTURBATIONS OF DYNAMICAL SYSTEMS
WITH A HYPERBOLIC FIXED POINT

BY
YURI KIFER

ABSTRACT

We consider the Markov diffusion process ¢°(t) transforming when ¢ =0 into
the solution of an ordinary differential equation with a turning point € of the
hyperbolic type. The asymptotic behavior as ¢ —0 of the exit time, of its
expectation and of the probability distribution of exit points for the process
£°(t) is studied. These indicate also the asymptotic behavior of solutions of the
corresponding singularly perturbed elliptic boundary value problems.

1. Introduction

In the connected bounded domain G C R" with the smooth boundary JG, let
there be given a nondegenerate elliptic differential operator

2

(1.1) L =% Y a'(x)

3 N2
ij=n Ix;0x; + .;. b (x) ox;

and the first order operator
i i
(1.2) (B(x),V)=X B'(x) 5
i=n i

both operators have C’-coefficients extended smoothly into the entire space R"
so that

(i) they remain bounded functions with bounded first derivatives in R" and

(ii) (a”(x)) is uniformly positive definite in R".

The operator L* = £°’L + (B, V) generates a Markov diffusion process £:(t)
being a solution of the stochastic integral equation

(1.3) &E(t)=x +L (B(£:(s))+ €2b(£5(s)))ds + sL o(&:(s))dw(s),
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where b(x)=(b'(x),**+,b"(x)), o(x) is a matrix so that o(x)o*(x)=(a’(x))
and w(t) is the n-dimensional Wiener process starting at zero (see, for instance,
2D).

The process £:(t) is considered as a small random perturbation of the
dynamical system S’ defined by the ordinary differential equation

(1.4) ‘—1%—"2 =B(S%), S%=x.

Let 75 be the exit time to the boundary 3G of G for the process £:(t), i.e.,
(1.5) ro=inf{t: £:(t) € G}.
Then the expectation u* (x) = Er; satisfies the Poisson type equation (see [2])
(1.6) Lu*=-1,  u =0

The probability distribution function v°(x,t) = P{r; =t} satisfies the parabolic
equation (see [2])

1.7) Lo =d0°/0t, 0" |mo=0, 0°|c=1,

where, as usual, P{-} denotes the probability of the event in brackets.
Let Pi(dy) = P{£:(;) € dy} be the probability distribution of the exit points
of £%(t). Then for any continuous function ¢(y) on 3G the integral

(19) wiw)= [ ePiay)

is the solution of the Dirichlet problem (see [2])
(1.9) L'wi=0, wilc=¢

The purpose of this paper is to study the asymptotic behavior of P{r;=t}, Er:
and P;(dy) as e =0 and therefore, as well, the asymptotics of solutions of the
corresponding problems (1.6), (1.7) and (1.9).

Suppose that G contains the origin 0,B(0) = 0 and @ is the unique limit point
for solutions of (1.4). Naturally, the asymptotic behavior of u*,v* and w* as
¢ — 0 depends on the behavior of solutions of (1.4) and, in particular, on the type
of the stationary point O.

In the case when O is of the center type the problem was considered in [S]. In
the case of @ being an attracting point this problem was studied in a number of
papers (see, for instance, [2], [4], [8]) and [10]).

This paper is concerned with the case when @ is of the saddle type or of the
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repulsive type stationary point. If x € G such that S'x leaves G after some time
then there is a finite

(1.10) t(x)=inf{t >0:S'x € 8G}.

We shall prove that, in this case, when £ — 0 then 7: tends in probability to t(x),
u®(x) tends to t(x) and P; tends in the weak sense to 8(S'*’x), where §(z) is the
probability measure concentrated in z.

If x€G and Sx—0 as t—>» then we shall show that there is
lim, o |In ¢ |"'u* (x) independent of x. Concerning P%(dy) we shall see that this
distribution will concentrate as ¢ — 0 on some submanifold of the boundary 4G.

2. Assumptions and main results

Suppose that the limit set of the dynamical system S’ in G U 3G contains just
the one point 0, which is the origin of R". Assume also that for some bounded
smooth vector-function (x),

2.1) B(x)=Ax +¢(x)|x ]

where A is a matrix having eigenvalues with nonzero real parts and at least one
eigenvalue of A has a positive real part.

By the well known facts about stationary points (see, for instance, chapter 9 of
[3]) it follows from the assumptions above that there is the decomposition

(2.2) GU&G=0UA;UA2UA3,

where A, is a set of points x € G U 3G such that if x € A, then $*x € G for
u>sand S“xZ G UJIG if u <s for some s =s(x)=0and S'x > O as t —>x;
A, is a set of points x € G U 3G such that if x € A, then $“x € G for u <s and
Sx€GUIGifu>sforsomes =s(x)=0and S'x — 0 as t = —x; Asisaset
of points x € G U dG such that if x € A; then $*x € G provided s, < u < s, and
S“x& G U 4G if either u > s, or u < s, for some s; = 5,(x) =0 and 5, = s:(x) =
0.

REMARK 2.1. We assume that the vector field B(x) is extended outside of G
so that if $"x € G U 4G and Sx € G U 4G for t,<t, then $“x € G U IG for
all u €ty t,).

REMARK 2.2. The set A, can be empty. In this case A; is also empty.

Let Ay, -+ -, A be the eigenvalues of the matrix A and
(2.3) ReA,=:--=ReA,>ReA, . =:--ZReA, >0>ReA,. =---=ReA,,

where Re a is the real part of a.
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Denote by I'm. the eigenspace of A which corresponds to the eigenvalues
Ay, o+ A, It is known (see [3] chapter 9) that there is a »-dimensional
submanifold W.. tangent to I'n.x at € and invariant with respect to S'. From the
assumptions it follows that the intersection Qumax = Wi N 3G is not empty. If
v >1 then QOm.. is a submanifold of (v — 1)-dimensions on the boundary 4G. If
v =1 then Qn.. consists of two points.

We shall prove the following results.

THEOREM 2.1. If x €(0 U A)\dG then for any & >0,

TiReAl
Ine|

2.4) limP{1—6< <1+a}=1,
e—0

i.e., 7i/|In €| tends in probability to (Re A,)™" as € = 0. If x € A, U A, then for
any 8 >0,

. T, _
(2.5) 11_r3P{1 8<t(x)<1+8}—1,

i.e., 7 tends in probability to t(x) defined by (1.10) and 7; is given by (1.5).
THEOREM 2.2. If x €(0 U A))\IG then

(2.6) lim Ine|["Eri=(ReA)"
If x € A, U Aj; then
2.7 Li_rpo Er:=1t(x).

THEOREM 2.3. (i) If x €(0 U A\)\ 3G then for any open subset U of 3G such
‘hat U D Qmax one has

(2.8) lim P3(U) =1.

(ii) When v =1, Q... consists of two points z, and z. and as € — 0 then P3(dy)
tends in the weak sense to 3(8(z:) + 8(z.)), where 8(z) is the probability measure
concentrated at z.

(iii) If x € A; U A; then P; tends in the weak sense to the probability measure
8(S'"¥x) concentrated at the point S‘x.

ReMARK 2.3. Theorems 2.1-2.3 by means of (1.6)-(1.9) give the asymptotic
behaviour of the corresponding singularly perturbed elliptic boundary value
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problems. In the same way as in (4.38) below one can easily obtain also the

asymptotic behaviour of the problem L°u* = — f, u* I,,G = 0 using the probabilis-
tic representation of its solution (see [2]),

u (x)=E f 0 f(€(s))ds.

This gives for continuous and bounded function f that

2.9 lzi_r’r‘}|lns|"u‘(x)=(ReA1)_‘f(0’) if x €(0 U A,)\G
and
1(x)
(2.10) limu‘x)=| f(SW)dt if x€EAUA,.
€ 0

REMARK 2.4. The similar results are true if the hyperbolic limit point is
replaced by a hyperbolic limit circle.

3. Auxiliary Gaussian processes

For any x € (A, U 0)\dG define the Gaussian diffusion process n:;(t) as a
solution of the following stochastic integral equation:

(3.1) nZ(t) =z +£’ (B(S“x)+ R(S"x)(m i (u)—(S“x))du + sfa(S"x)dw(u),

where

() R) =) =),

Set

(3.3) SO =nihe(t)— S, LUt)=L6%0).
In what follows we use the norms

(3.4) |z[f=2zi+---+2z. and ||M||2=lsg:s"m§,

for each vector z =(z,-* -, z,) and the matrix M = (m;,1=i,j =n).
We shall need the following estimate:

LemMMA 3.1. For any 8 >0 there is CY >0 such that
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(3-5) E[{35(0)| = C9( 2| + e)e®e e
for each x E(A;UON\IG, zEG and 0=5<t.

Proor. The process {3 () satisfies the equation
68 w2+ [ Rz e [ olsmdw ).
One can see that also

a()=e"z +J e M (R(S*x)— A) {5 (u)du
(3.7 7
+eI e g (S"x)dw (u),

where A is defined by (2.1). Indeed, taking the differentials in (3.6) and (3.7) we
shall see that the solutions of equations (3.6) and (3.7) satisfy the same stochastic
differential equation with the same initial condition and so coincide.

It is easy to see from (2.3) that e™* is the eigenvalue of e** with the greatest
absolute value. Thus by the spectral radius theorem (see, for instance, [11]) it
follows that

(3.8) ll_g "eAs "1/: - eRcAl.

Therefore for any & there is C%’ such that

(3.9) le™ || = CPes®**  for all s =0.
Since x € (A; U 0)\3G then

(3.10) |S*x —O|=CPe™*  forall u=z=0,

where C®, ay>0 are independent of x and w.
By the smoothness of the coefficients of the operator L* one obtains from
(3.10) that

(.11) [R(S“x) - Alj+]lo(S“x) — o(O)]| = CPe™"

for some C®>0.

Let M(u) be a random matrix-function such that for each u €[s,¢] the
random matrix M(u) is measurable with respect to the o-algebra F, generated
by the random values {w(v),0= v = u}; then it is well known (see [2] chapter
4.7) that
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(3.12) E“‘: M(u)dw (u)

2 t
- [ EIM@lFdu

provided the right hand side is less than infinity.
Therefore, by the Cauchy-Schwartz inequality

< ( f ' EIIM(u)IIZdu)m.

Employing (3.13) with M(u) = e"“ o (S"x) together with (3.9) and (3.11) we
obtain from (3.7) that
E|Zuz0|

t
é e('_SXRC'\1+s) (Cg)lz | + C(g])c(S)f e-—anue~(u——s)(ReAl+§)E
(3.14) y

for some C“>0.
Therefore by Gronwall’s inequality (see [3]) for the function

(3.13) E

It M(u)dw(u)

5 (w)| du + eC“") ,

(3’15) a,(t) = g “ReA NI~ 7 I {i:(t),

one gets (3.5) with C9 = (C¥’ + C®)exp(CH’ C/ay).
The next estimate we shall need is the following result:

LeMMA 3.2. For any 8 >0 there is C$ so that

(3.16) E

L)~ A= CP(|z |+ e)e e ™,
for each x €E(A,UO)\3G, z€G and 0=s<t.
Proor. From (3.5), (3.7), (3.9), (3.11), and (3.13) we easily find

]
E|Z50)- 20 S CYC® [ emroww enp

£5i(u)|du
3.17) F COCO go®eAHON=5) g3
< Oz |+ e)e o

with some C“>0 and C9 = CYCYCY%;' + CC® that proves (3.16).
Now we need the following estimates for the process { ;(t) defined by (3.3):

LemMMA 3.3. (i) There is Ky>0 such that
(3.18) P

é’;(t)' = r} = K()E ‘Vrne—‘“‘ Rea,

>

for any z € G and g,r1,t >0.
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(ii) There is K, >0 and 8,>0 such that
3.19) E dist (£5(t), Tonax) = Ki(£ + dist (2, Times)) € ®47,

forevery z € G and ¢, t >0, where, recall, .. is the eigenspace of A correspond-
ing to the eigenvalues A, -, A,.

Proor. Let I'; be the eigenspace of the matrix A corresponding to the
eigenvalues having real parts less than ReA;. One can choose vectors
XY o £™ in the linear space T’ so that

(3:20) (€0, €70 =(AT'¢9, €0 =8,
where A =(a’(0)) and 8, =0 if i#j and &; =1.

Consider now a basis ¢, - - -, ¢™ of the whole R" such that £"*V, -+, ¢ are
the same as above and (3.20) holds for all 0=, j = n. For any vector { €R"
there is a unique representation & = é + £ with £€T, and € €T, where I, is
spanned by ¢©, ... £,

Since T, is an eigenspace of A then A¢” €T, forall i =v +1,- -+, n. Hence,
equation (3.6) can be written for {:(t) in the new basis in the form

(3.21) Em=:+ f ' Aoli(u)du + W (1),

(3.22) Fy=£ + [ (haditu)+ Aditu)du + o,

where Ao is a (v Xwv)matrix, A, is a ((n—v)Xv)matrix, A; is a
((n —v) X (n — v))}-matrix and w(t) and W (t) are the Wiener processes (with
respect to the inner product (3.20)) in I, and I';, respectively.

It is clear that

(323)  P{l|sr=P{{u)|sKer}= G* (2, y)dy,

{y:lylSKyr}

where §°(t, z,y) is the transition density of the process /i(t) and K,>0 is a
constant depending just on the matrix A. This transition density has the explicit
form

qA’(t, Z, y) - (27782)‘v/2 (det J- e(l—s)/\"e(,—,),\")ds)_l/z

1
0

(3.24) . -
X exp { _% 6_2 <(I e(r‘s)A(,e(t—s)A.',ds) (y _ elA"Z), (y _ e'A"z)>} .
0
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Obviously, the eigenvalues of Ao are A4, - -+, A, and so by inequality (5.20) of
(6],
(3.25) K3'e* R M =det (J’

t
e(t—s)Aoe(t—s)Auds) § Ksezw ReAl,
0

for some K;>0. Thus
(3.26) G°(t,z,y)=(m) e " Ke "R

which, together with (3.23), gives (3.18).

To prove item (ii) pick a basis ¢, - -, ¢ of R" satisfying (3.20) and such
that ¢, - - -, ¢ € T'ax. For any vector ¢ € R" one has the unique representa-
tion ¢ = ¢ + ¢ with § € [',, and €T, where I'; is spanned by y**?, - - -, ™,

It is clear that Ay € I'max for all i =1, - - -, v. Thus equation (3.5) for £(¢) in
this basis can be written as follows:

(3.27) L)=:2+ L ' (Arwe £5(0) + AsL5(u))du + £ (),

(3.28) Fy=5+ L AL (w)du + e (1),

where Amx s a (v Xw)matrix, A; is a (v X(n—v))matrix, A, is a

((n — v) X (n — v))-matrix and W(¢) and Ww(¢) are the Wiener processes in I'max

and I';, respectively, which correspond to the inner product ( , ).
Obviously,

(3.29) K31 £ = dist (L2(¢), Te) = Ko | £0)),

for some K,>0 depending just on the matrix A.
It is clear that the eigenvalues of A4 are A,.,, - - -, A, and so for any & >0 there
is C% such that

(3.30) fle™]= CP e ®ra®,
for any t = 0.

The solution of (3.28) has the form

3.31) {zi(t) =e™Mf+e f e d (u).

i)
Taking into account (2.3), (3.13) and (3.30) we easily obtain
(3.32) E|Z:(0)| = CQ(e +]Z])e®H (1 + (Re A)) ™)

with
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2 2
Now from (329) and (332), (3.19) follows with K;=
K4C(37o)(1 + Kq)(l + (Re Al)—ln).

Set

(3.33) 0o = min (ReA, —ReAi..; Re Al)

(3.34) t,(e)=(Reri+vy)'|Ine| and r,(e)=e" """ for y> —ReA,.
Actually, we shall need just the following result:

LemMA 3.4. There are some positive constants C®, yo<1,v,, y. and vy, such
that for any 8 >0 small enough and x € (A, U 0)\ 3G there is CY so that

(3.35) P{|n&itu(e)| Z e °r ()} = CPe™,
(3.36) P{| n6:(to(€))| = €°r(e)} = CPe™,
3.37) P{dist(n&:(t,,(£)), Tmax) = £ "1, (e)} = CPe™,

where we can take, for instance, vy, = imin(ao, 1) with a, defined in (3.10) and the
other constants will be found below.

Proor. By (3.3) and (3.10) one has
(3.38) [£56(0)] = | max(t)| - |S'x | Z [ nsi(t)| - CPe™™"

Setting here t = £, (¢) we shall obtain (3.35) from (3.38), Chebyshev’s inequal-
ity and (3.5) used with & replaced by i8(Re A, + o).

For x = @ relation (3.36) is given by (3.18). We shall prove here (3.36) for
x € A\ 3G satisfying (3.10) with ao>Re A,. One can verify (3.36) for other
x € A, in the same way as in §4 of [7] by considering the explicit form of the
transition density of the Gaussian process {5o(t) (see Appendix).

By (3.3), (3.5), (3.10), (3.16), (3.18), (3.38), the Markov property and
Chebyshev’s inequality one can see that

P{|noi(t)|=r}=P{
= EP{

LEa(D)| ST+ CPe ™'}

(o= r+CPe)
S EP{| izt —s)|S2(r + CPe™™")}
L)~ L (O 21+ CPe™')

g Koe-uzv(r + C(Z)e—nul Ve—(l—s)uReAl

(3.39)
+ EP{

+2C(CO+1)-¢ - (r + CPe ') " -exp[(Re A, + 8.)t — as].



84 Y. KIFER Israel J. Math.

Given & take here t,=t.(e), r=¢’r,(c) and, for instance, s=
38 (Ine{(as’ +(ReA)™), 8 =28(ao—ReA)(ReA, + vo)(ReA,)’, then (3.36)
follows from (3.39), provided a,>ReA,.

Since I'.. is a hyperplane we obtain by (3.3), (3.5), (3.10), (3.16), (3.19), (3.38),
the Markov property and Chebyshev’s inequality that

P{dist(n5:(t), [max) > 1}
= P{dist(£56(1), Trnax) > 1 — CPe ™'}
= EP{dist ({ z555)(t = 5), Tmax) > 3(r — CPe ")}
+ EP{I £'€Eg;:,<s,(t) - 42353;,(5)(0! > %(’ - C%% D)
=2K(C+ De(r— CPe ') 'exp[8:5 + t Re A, — 8ot — 5)]

(3.40)

+2CCY + 1)e(r — CPe ') 'exp[t(Re A; + 8;) — aos].

Put here t =1,(g), y: =imin (8o, ao)(ReA; + o) ', r = e"r,(e), s =¢/2 and
8: = imin(8,, ao), then (3.37) follows from (3.40).

4. Proof of Theorems 2.1-2.3

We start this section with the following result proved in [6] (Lemma 4.1 and
Corollary 4.1).

LeMMA 4.1. There exist do, ro >0 which depend just on G and the flow S* such
that, for any sequence of points zo,* - *, zm € G satisfying the property:

SIZ,- EG and Ziﬂe (],(Slz.')
4.1) : .
foralli=0,---,m —1 withsomer <r,,
there is a point y € G such that
(4'2) Z; E Udo' (S')’)» i = 0, Y m’

where U,(z)={v:|z —v|=r}.

Another result about the dynamical system S' that we shall need here is the
following:

LEMMA 4.2. There is an open domain G D G U 3G such that for any 8 >0
there is C3” >0 with the property: if for some points x and y,

4.3) S‘x€G and S*yEG for all u €[0,¢]
then
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4.4) sup |S“x — Sy | = Cy”e® M| x —y].
O=ust

ProOF. Choose some domain G O G U 3G such that the decomposition
(2.2) holds for G, as well. It is possible since B(z) was extended smoothly into
the whole of R".

One can write

“4.5) S“z =e“*z +Ju e“M(B(S”2)~ AS*2)dv.
0

Indeed, differentiating both sides in (4.5) we shall get that the solution of (4.5)
satisfies (1.4).
Substituting x and y into (4.5) we deduce from (3.9) that
lsux _ Suy | é C(sl)e(ReA|+5)u|x _ yl
(4.6) .
+ C‘;’L e RO B(§°x )~ AS°x — B(S°y)+ AS®y | dv.

By lemma 4.3 of [6] it follows from (4.3) that

4.7) |S°x | +]8%y | = Ksmax(e ™™, e ™)

for some K;, @, >0 independent of x,y € G. Using (2.1), (4.6), (4.7) and the
smoothness of ¢ in (2.1) we easily obtain that for some Ks>0,

sup |S“x — Sy | S CPe®M | x —y|

Osust

4.8) ) ,
+ C%"Kse“‘“'”"f max (e, e ) e ®AI qup | §0x — S°y | du.
0

0=vSu

Applying Gronwall’s inequality (see [3]) to the function
axt) = e N sup | S x — Sy |
0sust

considered in (4.8), we deduce {4.4).
We shall need also the following important result:

LeMMA 4.3.. There are positive constants Ke, a and s such that for any g >0
one can find o(B)>0 and K+B)>0 so that the following is true:

Qf(x,T)EP‘{ inf sup |§i(t)—S'z|>sH}

2 € U, 1-5(x) 0=t =min(T,7%)

(4.9) = Ko(min(T, ¢ *)Yexp(— au/e*®*) + KA B)exp(— as/e?),
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for any x € G and positive 8 <1 and T, provided 0 < ¢ = eo(B), where, recall, 7;
is the exit time to the boundary 3G for the process £x(t).

Proor. (Cf. section 5 of [6].) In the author’s paper [6] it was actually proved
that there is a positive constant a,>0 such that for any 8 >0 one can find
£:(8)>0 and Ks(B)>0 so that

(4.10) P{ri>t}=Ks(B)exp(—ast) forallt=¢7® provided ¢ = &,(B).
Therefore, if £ = £/(8) then
@.11) 0= Qi(x, T)— Qi(x, min(T, e *)) = K«(B)exp(— ase ®).

Set N = integral part of min(7, ¢ *) and consider

Q:(x,N+1)= P{ inf sup |€x(k)—S*z | >2dod1r(s)} ,

z2€ U, 1-¥x) k — integer
0=k Smin(r%,N+1)

where d, is defined in Lemma 4.1,

4.12) r(e)=¢"°/4d,d}, di= sup |DS“(2)|
ZEGUIG

—1susl
and DS"(z) is the Jacobian matrix of $“ at z.
One can easily obtain from [1] (see formulas (5.7) and (5.8) of [7]) that

Qi(x,min(T, e *))~ Qi(x, N +1)

=min(T,e™") sup P{|§:(k)—z|§e‘"°/2d1,
0SKSNIEG

@.13)
|k +1)—S'z|=¢'*/2d, and sup |€i(k +1)—S'z|> e‘"‘}
O=irs1
=min(T, ¢ *)Ksexp(— as/e*®),

for some Ko, as>0.
Next we have

P{riém}=f I P (L, %,20) P (1, Zm-1,2m)d21"* - AZm
G G

(4.14) =I°(x,m)+ R°(x,m),

where p* (¢, x, y) is the transition density of the process £:(¢) with the absorption
on the boundary 4G, i.e., in fact, of the process £x(t) = £x(min(t, 7)), and
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@15 I1°(x,m)= f p,x,z) p*(L, Zm-1, Zm )dz1" - AZom.
Upex(S'x) Uye)(S'2m 1)

From estimates of [1] it follows that
(4.16) Re(x,m)=m sup p°(1,y,z)=Kiomexp(—adc’),

22U, )(S'y)
for some Ko, as>0.

Notice that the integration in the integral I°(x,m) in (4.15) is over all
sequences w = (Zo, Z1, " * *, Zm ), Zo = X, satisfying (4.1) with r = r(¢). Therefore by
Lemma 4.1 for any such sequence w there is a point y“ so that
4.17) sup |z — S*y“|=dor(e),

k —integer
0sksm

where @ =(20,"**,2m), Zo=x and 2, €EG for all k =0, -, m.
Denote

£uk)—S*z| >r] .

Q§(x;r;l;m)=P{'r§§m and inf sup
z € U,1-3(x) k —integer
0=k =i

Then by (4.14)-(4.17) we get
(4.18) Qi(x; dor(g); mym) = Kiom exp(— as/e*®).

Recall that the coeflicients of the stochastic equation (1.3) are extended into
the entire space R" as bounded and smooth functions and so we can consider
£:(t) after the moment 75, as well, and S can be applied to any z €ER".

As in (4.16) we obtain from [11] and the definition of d; in (4.12) that

sup P{|&i(k)—z|=dor(e) and
z€GUIG

£k +1)—S'z|>2dodir(e)}

(4.19) = Kuexp(_ a7/825),

for some Ky, a:>0.
Now (4.18) together with (4.19) gives

(4.20) Q° (x,2dodir(g),m,m + 1) = Kpum exp(— ag/e™),

for some Kz, as>0.
Obviously

N+1

Qix,N+1)= EO Qi(x, 2dodir (), m,m +1)

and so by (4.11), (4.13) and (4.20) we get (4.9) which proves Lemma 4.3.
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From Lemmas 4.2 and 4.3 we obtain immediately the following statement:

CoRrOLLARY 4.1. For any positive 8,y <1 there is Cs, >0 such that

4.21) E sup

O=u=min(,,75)

Ei(u)-S"xP=CEY e exp[2t(Re A, + 8)]

for every x €E(0 U A\ 3G and t >0, provided ¢ is small enough.
Now we are able to compare the processes £x(¢) and 75i(2).
LemMa 4.4. For any positive 8,y <1 there is C42 >0 such that
(4.22) E &)~ n&3(t) xisee = C826 exp[2t(Re A, + 8)]
provided x €(0 U A)\JG, t >0 and ¢ is small enough.

ProoOF. One can verify directly that the process £:(¢) satisfying (1.3) is also
the solution of the following equation:
£:0) - 8'% = [ e*(BEiw) ~ B(S™x) ~ A€3(w) — "5 )du
0
(4.23) . ,
+€2J’ e b(£i(u))du +z—:j e“ "o (&x(u))dw (u).
0 0
By the C*-smoothness of coefficients B(z) we can write
4.24) B(z)=B(S“x)+ R($*x)(z — S*x) + {i(z, x, u)|z — S*x [}

where ¢ is a bounded function when x E6U A, and z € G U 4G.
Employing (3.3), (3.7), (3.9), (3.11) and (4.21), (4.23), (4.24) we obtain

52| xiesw

(425) S CPCD [N S E| ) 1) s

t

+ Knc(l)c(ll) 2- 'yf e(ReAl+6)(l+u)du

0

t
+ K12C(al)£2 f eBeMHONW gy 4 JE (x, t),

0

for some K12>0, where

(4.26) J°(x,t)=eExis=

L‘ e Mo (£x(u))— o (S"x))dw (u) | .
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Using (3.13) together with (3.9) and (4.21) we conclude that

172

7 ()% K€ ([ 2080y | 20 - 83 P
0

4.27) < 8277K13c(81)(c(81'§‘)yt)l/2e(ReA,+6)l’

for some K,;>0. Applying Gronwall’s inequality (see [3]) to the function
as(u) = e T E [ Ex(u) — n5iu) | Xusy

taken in (4.25) we get from (4.27) the assertion (4.22).
Now we can proceed to the proof of the theorems.

ProoF OF THEOREM 2.1. Define
(4.28) dy(x)= inf dist (8'x, 3G).

Here we assume x € (A, U 0)\3G and so dx(x) > 0. Then by {(4.21), (4.28) and
Chebyshev’s inequality we obtain

P{Tiét,,,,(e)}éP{ sup

SusSmin(ty (£).77)

£iu) - 53| 2 d(a))

(430) = Ciemdi(x),

where t,(¢) is given by (3.34) and
(4.31) ¥e=(yo— 8)(Re Ai +v0) .

Recall that the hyperplane I'.. is tangent at O to the manifold W,,.. defined in
§2. Therefore one can find K, >0 so that

(4.32)  dist(2, W) = Kior® forany z €lmacand r >0, provided |z |=r.

Now using (4.22), (4.30)-(4.32) and Chebyshev’s inequality we easily obtain
from (3.35)-(3.37) that there are vs,v+>0 such that for any §>0 and
x €(A;U0O)\3G one can choose C§I(x)>0 so that

(4.33) P{Ex(t,(€) E W* (8, 70, 2ys)} =1 - C57(x)e ™,
where W* (8, yo, vs) ={z : £°1,(8) = | 2 | = £ °r,(£), dist(2, Waax) = £™1(€)}-

From chapter 9 of [3] it follows that for any z € Waa

lim ¢ In|S™z|= —ReA,
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and so for any 8 >0 there is C§”>0 such that
(4.34) (C§9Y | z| e N =[Sz | = C§®| z] e ™M,

provided z € Wi, and $*z € G for all u €[0,¢], where G D G U 4G is the
domain chosen in Lemma 4.2.
Set

f(z)=inf{t 20:S2& G};

then it is easy to see from Lemma 4.2 and (4.34) that

4.35) Sup  £(2) =t-asrer,(£) — bo(€),

zZEW*(28,v0,7s)

provided ¢ is small enough.
Put also

t(z)=inf{t Z0:|S'z| = 1dist(0, 3G)};

then by Lemma 4.2 and (4.34) one can see that

(4.36) inf  £(2) 2 tasrer(€) = tulE)-

ZEW*(28,70.7s)

Finally, (4.9), (4.33), (4.35) and (4.36) give for x €(A,U 0)\dG that
(4.37) P{t45 ReAl(s) = T; = | P ReAl(E)} = 1 - 2C$§13)(x)€ yaa’

provided ¢ is small enough. This together with the definition ¢, (¢) in (3.34) yield
(2.4) taking £ — 0. The assertion (2.5) follows immediately from (4.9) and (4.10).

PrOOF OF THEOREM 2.2. From (3.34), (4.10) and (4.37) we easily get

[lIng | Eri— (ReAy) ™| =

Ing|™ f P{riz=t}dt —(ReA)™ ’
0

=

Lisreafs)
[Ing|™ [ P{ri=t}dt —(ReA,)™’ l
0

f—asReafe)
+|lng ™ f P{r:=t}dt

l4gRerfe)
3% -

4.38) +|lne|™ j P{r:=t}dt

f—4sRerfe)

+|lng|™? L;o’ P{r:=t}dt
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=45(1+48)(Rer)) " +2CHV(x)e ™ (Re A,)'(1+48) ™
+85(ReA,) (1 -168%) " +2C§ (x)e? |Ing |
+ Ko(tyed)a:'|Ine | exp(— aqe "7%°),
provided ¢ = £,(3y+8).

Letting € — 0 in (4.38) and taking into account that 8 >0 is arbitrarily small
we shall get (2.6). The assertion (2.7) follows immediately from (4.9) and (4.10).

ProOF OF THEOREM 2.3. By (4.35) and Lemma 4.2 we obtain that there are
Kis, ¥2>0 such that

(4.39) sup sup dist(S'z, Wha) = Kise ™.

zEW* (28,yp,vs) O=t56(z)

Therefore by (4.9), (4.33) and (4.39) we prove item (i) of Theorem 2.3. Item (iii)
follows easily from (4.9) and (4.10).
To prove item (ii) define

T=(8, vo, 1) ={z : €°r,(£) = | z| = £ °1,(€), dist(z, Tmax) = £711(€)},

where vy, and v, are found in Lemma 3.4.

When v =1, § and ¢ are small enough then I (8, vo, y:) consists of two
disjoint connected components I'5(8, yo, y1) and I'2(8, o, y:) which are symmetri-
cal with respect to 0. Notice that the process {5o(¢) defined by (3.6) is also
symmetrical with respect to 0, i.e., the probability distributions of {Gz(¢) and
— ¢5o(t) coincide. Thus

(4.40)  P{L5a(te(e)) ETU28, vo,2v1)} = P{L5e(tn(e)) ETU28, Yo, 271)}-
If 8 and ¢ are small enough then also

T=(28, ¥o,371) NT5(28, vo,37:1) =D
and so by (4.40)
(4.41) P{L5u(t(€)) ET28, v, 371} =15
Since for x €(A: U 0)\4G it follows from (3.3) and (3.10) that

| n53(te(€)) — L8o(t(8))| = CP e

then by the choice of vy, in Lemma 3.4 we get for small ¢ that

(4.42)  P{LTo(te(e)) ET28, v0,2v1)} Z P{nii(tu(e)) ET(S, vo, 7).
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On the other hand, by (3.35)-(3.37),
(4.43) P{nsi(tu(e ) ET(S, v0, v1) UTZ(8, yo, y)} 21— CPe ™,
provided & and £ are small enough. Now by (4.41)-(4.43),
(4.44) 1= P{n§i(tu(e)) ETLUS, vo, y1)} Z3— CPe™.

Next, employing (4.22), (4.30)-(4.32) and Chebyshev’s inequality we deduce
from (4.44) that

1 CY9(x)e™ = P{EUt€)) € WS, 10, 277)}

(4.45) %_ CSSIS)(x)s g8

v

(cf. (4.33)) for some vy, y:>0 and C§(x)>0, where W$(§, y0,2y5) and
WZ2(8, vo,27v-) are two disjoint connected components of W*(8, yo,2v7).

Finally, using (4.9), (4.35) and (4.39) together with (4.45) we obtain assertion
(i) of Theorem 2.3 by letting ¢ — 0, that completes the proof.

Appendix: Proof of (3.36) for all x E(A,U0)\dG

Let DS; be the differential of the dynamical system S$‘ at z € R" and define
the metric form

(A1) é a;(z)dz'dz’, z€R",
ij=n
where (a;(z)) = (a(z))” and the matrix (a”(z)) is given in (1.1). Denote by T,
the tangent space at z € R" and for any £, € T; let (£, ). be the inner product
of £ and n in T, generated by the metric form (A1l).
The differential DS acts from T; to Ts.. and the adjoint operator (DS})* acts
from Ts. to T. and satisfies the property

(A2) ((DS2)*n, €). =(m, DS €)sn.
for any z€ER", £ET, and n € T,.
Define

¢ —172
ri(t, &) =Qme?) " (detsy | DSs—(DS-)*dr
) )

9 exp{ ~503(([| DSt (DS} *ar) (n - DS18), (0 - D)) }.

S'x

where ¢ € T,, § € T, and the operator fo DS5-- (DS +)*dr transforms the
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tangent space Ts:, onto itself and so the determinant dets, with respect to the
inner product {( , )s is defined in a correct way.

Let pi(s, z, t, y) be the transition density, with respect to the Euclidean volume
in R", of the process & (t) defined by (3.3). One can easily see (cf. the formulas
(6.6) in [6] and (4.3) in [7]) that

(A4) P:(Oa 0, 14 Y) = fi(t, 0’ Y)(det a; (s‘x ))”27

where y is considered as a vector of R”, as well as a vector of Ts,.
Let now x €(A; U 0)\3G. One has

P{lLsat)|=pi} = J{ p:(0,0,1¢ y)dy

y:dylses)

(AS)

= J‘ ri(t9 01 "l)dS‘x"'L
{n:lnlist, =p3}

where p,= Kisp1, Kis>0 is a constant independent of p,, x,¢; ds.m is the
element of the Euclidean volume generated by the inner product ( , )s. in
Ts and ||n|ls~ is the norm of  with respect to the same inner product.

Let I™ and I'” be the eigenspaces of the matrix A from (2.1) corresponding to
the eigenvalues of A with positive and negative real parts, respectively. Recall
that [n.c denotes the eigenspace of A corresponding to Ay, -+, A, in (2.3).

Choose 1, >0 big enough so that S*x is close enough to 0 and set, for t 20,

(A6) I5.=DS,°T* and Ty = DSy Tonas.
It is easy to see that if #, is big enough then

(A7) Ise—=T* and Ty = Tau as t >,

and also

(A8) | DS steem lsx = Kire ™ || [lst+=

for any n € [s++, and all ¢,7 =0 with v,, Ki;>0 independent of ¢, 7 and 7.
Next, for some subsequence f;,— ® the subspaces DSsiI* converge to a
subspace I'. Set

(A9) Iv=Ds.I” fort=0.
One can verify that s, —T" as t— and
(A10) | DS s |lsoms = Kige ™" || € |5

for any £ € ['s. and all ¢, 7 = 0, where y1, K1 > 0 are independent of £, 7 and £.
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In fact, under assumptions of §2 it follows from [9] that the tangent bundle T,
restricted to the domain G has an invariant under DS continuous splitting
To =™ @I, where ™ and [ are expanding and contracting subbundles,
respectively. However we shall need here this splitting just for one trajectory
{S'x,t =0} and so the spaces I'su,I'sw and [sn, constructed above, will be
enough for our purposes.

Define the family of operators

DSy Tore > Tee+vy, 720

acting as follows:

(A11) DSiné =DSiné  if €T,

and

(A12) DS§n = ——u—'L"——Dss if n €lsn.
||Dss =T "5'*

In the same way as in lemma 4.2 from [7] we obtain that
-172 ~,
(A13) Ky = (dets:, (f DS 5-(DS g+~ )*d7)> |Jac DS.| = K

for some K,,>0 independent of ¢, where Jac DS, is the Jacobian of the linear
map DS : T, = Ts. with respect to inner products {( , ), and ( , s
Next, for any (¢ €T,

1)) ([ DSi-uDSi-yan) DS D) = Kl £

for some K3 >0 independent of ¢ and t. Indeed, it suffices to prove that the
selfadjoint operator

-t ! T T Lt -
Wi(0)= (D5, [| DSiu(DS 5 dr(D551)7)

acting from T, to T, has eigenvalues which are greater than or equal to K or,
equivalently, that the eigenvalues of the operator W'(¢) are less than or equal
to K. But the last statement can be proved in the same way as inequality (4.34)
of [7].

For every £ € T, there is the unique decomposition ¢ = ¢™ +£*, where
£™ €T7* and £ is orthogonal to I'?™* with respect to the inner product( , ),.

Set U(t, p2) = {n € Ts« :||m|ls« = p2}. Employing (A3), (A6), (A13), (A14) and
Fubini’s theorem one gets
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[ r1(8,0, m)dssn
Ult,pz)

= Kw(me?)™? [~_, ex p(-%(&f)) d.£

DS s, Ultpr)

(A15) =Kus™ frw 550 &P ( - %(f'% (&, f"'“)) d.£™
= Kie ™ vol™([™* N DS U (1, p2))
= Kx»e"p3|Jac (ﬁ;:x)r:"',‘l
= Kt ~p3|Jac(DS ) =],

for some K,,, K;; >0 independent of ¢t and &, where vol7* is the volume on the
subspace I'7™* with respect to the inner product ( , )., v = dim[py =dimIT™>
and we denote by (H)y the restriction of the linear map H: T, — T, on the
linear subspace Y of T, and by Jac(H)y the Jacobian of the linear map
(H)y: Y—Z = HY with respect to inner products ( , ), and ( , )..
Since |Jac(e')r | = ““)....| then by the definition of I, it follows that

(A16) lim t"'In}{Jac(e)r.|=vReA,.

Taking into account that DS = e**, DS} depends smoothly on z,
DS.=DS: onI?™, Sx—0

as t— and using (A6), (A7) and (A16) we obtain that

(A17) lim ¢~ In| Jac(D$%)re=| = » Re A,.

One can see from here that for each « >0 there is CY® >0 independent of ¢t =0
such that

(A18) |Jac (DS rae| = CU9 ¢ * RN,

Using (A15) with p, = Kisp: = Kis(€°r(€) + CPe ™) we get by (3.3), (3.10),
(AS5), (A15) and (A18) that

P{1530)] = °r(e)} = P L55(1)| = £°y(6) + CPe™')
(Alg) = K1 Kn(c(lG))—l ~v —(ReA —x)w(s sfm(€)+ C(2)e—aot)v.

Taking t = t,(£), Yo =imin(ao, 1), « =i8(Re A+ o) and 8 small enough we
shall get (3.36) from (3.34) and (A19).
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